UNIT OVERVIEW & LEARNING JOURNEY

YEAR 10 - Computer Science:

J277/01 - COMPUTER SYSTEMS

PRIOR LEARNING (from Key Stage 3): TERM 2 TERM 1 **MY DIGITAL WORLD AUDIENCE AND PURPOSE**

Be SMART online and using ICT Create products that have impact Software Mastery: Microsoft Suite Software Mastery: PowerPoint **DIGITAL MEDIA CYBER SECURITY**

Being creative in a digital world Living in the modern world **Software Mastery:** Photoshop Software Mastery: PowerPoint

> ADVANCED PYTHON Computer Science taster Software Mastery: Python

UNDERSTANDING COMPUTERS How computers work Software Mastery: Scratch

TERM 3

PYTHON BASICS Begin to programme Software Mastery: Python

CREATE A VIDEO Research developing technology Software Mastery: Premier Elements

Aim of the Unit

YEAR

σ

In this unit students will learn how to develop an understanding of computer systems function. Students will learn the role of the CPU, Memory, and the need for secondary storage.

Topics to be covered:

Systems Architecture

CREATIVE DESIGN

Creative iMedia taster

Software Mastery: Photoshop

- Memory
- Storage

Assessment Procedure

The topics covered in this unit, will help prepare students for some of the theory needed for Paper 1. This will be examined at the end of Year 11 and is worth 50% of the final mark for the course. During the lessons, students will undertake informal MCQ (multiple choice questions) to diagnose misconceptions. They will then undertake an end of unit assessment. The assessment will be out of 50 marks.

Homework

Homework will be set at least once a week. Seneca assignments will be assigned to help with knowledge retrieval in the run up to assessments. Details of individual homework can be found on Synergy.

How can you help?

Encourage your child to attend sessions with their teacher after school to improve their understanding. They should also review their theory regularly at home, as well as complete homeworks thoroughly as they are all from past exam papers. Support is also available through explainer videos contained on the class team's page.

Unit 1 – SYTEMS ARCHITECTURE, MEMORY, AND STORAGE (Knowledge)									
1.1 Architecture of the CPU	Date:	\odot	<u>:</u>	(3)					
CPU Fetch- Decode -Execute Arithmetic Logic Unit Cache Registers Control Unit Von Neumann Cores Memory Address Register									
Memory Data Register Program Counter Accumulator Von Neumann									
1.2 CPU performance	Date:	\odot	<u>:</u>	(3)					
Cores Clock speed GHZ Overclocking Embedded system									
1.3 Memory	Date:	\odot	<u>:</u>	(33)					
Primary Secondary Virtual Memory ROM RAM									
1.4 Secondary Storage	Date:	\odot	<u>:</u>	(33)					
Internal External Optical Magnetic Solid state Flash Durability reliability Cost Portability Capacity Speed									

Revision, Test and Closing the Gap for topics covered so far				
TEST RESULT:	Target Grade:			
Mark:	Percentage:			
Grade:	On target?			

FUTURE LEARNING:

>	TERM 1	>>	TERM 2	>>	TERM 3	>
Computer Science	Section 1 Systems architecture, memory, and storage Theory for Paper 1 Computer Systems		Section 8 Logic & Languages Theory for Paper 2 Computational thinking	$\Big] \ \Big $	Section 7 Programming Skills for Paper 2	YEAR 10
Computer Science	Section 6 Algorithms Theory & Skills for Paper 2 Computational thinking		Section 7 Programming Theory & Practice Skills for Paper 2		Section 5 Ethical, Legal cultural & environmental Theory for paper1 Computer Systems	YEAR 10

